

Mechanism and Prediction of UGT Metabolism 27th August 2019

Mario Öeren¹ – mario@optibrium.com

Peter Hunt¹, David J. Ponting², Matthew D. Segall¹ ¹Optibrium Limited, Cambridge UK. ²Lhasa Limited, Leeds UK.

© 2019 Optibrium Ltd. . Optibrium™, StarDrop™, Auto-Modeller™, Card View™, Glowing Molecule™ and Augmented Chemistry™ are trademarks of Optibrium Ltd.

Overview

- UGT metabolism
 - A short overview
- Mechanistic studies
 - Ab initio
 - Semi-empirical
- QSAR models
 - Results from mechanistic studies
 - Steric and orientation descriptors
- Conclusions

UGT Metabolism

Uridine Diphosphate Glucuronosyltransferase (UGT)

- Metabolic enzyme
 - Conjugation (phase II)
 - 40% of conjugation reactions
 - Works with endo- and xenobiotics
- Human isoforms
 - Located in liver, kidneys, gut etc.
 - 19 known active isoforms
 - No full crystal structure available
 - 1A1, 1A4, 1A9 and 2B7

Reaction Types and Substrates

- *O*-glucuronidation
 - Phenols
 - Alcohols
 - Carboxylic Acids
- *N*-glucuronidation
 - Amines
 - Amides
 - N-heterocycles
- S- and C-glucuronidation
 - Thiols and thioketones
 - 3,5-pyrazolidinedione

Modelling Approach

- Project goals
 - Isoform-specific site of metabolism models
 - Isoform-specific substrate classification models
- Model should be based on fundamental physical properties
 - The rate of product formation is correlated with the activation energy (E_a) of the rate limiting step of product formation
 - Models are based on quantum mechanics
 - Each site of metabolism is considered in the context of the whole molecule
- Pros
 - It should transfer well between chemical classes
 - It should be applicable beyond the training set
- Influence of the active site of each isoform
 - Steric and orientation descriptors

Reaction Mechanism of Glucuronidation

Reaction Mechanism of Glucuronidation

- Wide variety of experimental studies
 - Chemical modification
 - Photoaffinity labelling
 - Mutagenesis studies
 - Competitive inhibitors
 - Homology modelling
 - Docking studies
 - Different mechanisms
- No previous studies using quantum mechanical modelling methods
 - Density Functional Theory (DFT)

Mechanistic Studies – Simplification of the System

- Simplification of the system
 - Disregard the protein
 - Simplify the UDP-GA

Mechanistic Studies – Ab Initio Calculations

- Simplification of the system
 - Disregard the protein
 - Simplify the UDP-GA
- Identification of a transition state
 - Ab initio (B3LYP/SVP)
 - Generalizable for *N* and *O*-glucuronidation

Mechanistic Studies – Ab Initio Calculations

- Simplification of the system
 - Disregard the protein
 - Simplify the UDP-GA
- Identification of a transition state
 - Ab initio (B3LYP/SVP)
 - Generalizable for *N* and *O*-glucuronidation

Mechanistic Studies – Validation

- Simplification of the system
 - Disregard the protein
 - Simplify the UDP-GA
- Identification of a transition state
 - Ab initio (B3LYP/SVP)
 - Generalizable for *N* and *O*-glucuronidation
- Validation of the transition state
 - Experimental data (V_{max})
 - $k = Ae^{\frac{-E_a}{RT}}$
 - Data availability (*O*-glucuronidation)
 - Shape specific active sites
 - Noise in biological experiments

Mechanistic Studies – Validation

- Simplification of the system
 - Disregard the protein
 - Simplify the UDP-GA
- Identification of a transition state
 - Ab initio (B3LYP/SVP)
 - Generalizable for *N* and *O*-glucuronidation
- Validation of the transition state
 - Experimental data (V_{max})
 - $k = Ae^{\frac{-E_a}{RT}}$
 - Data availability (*O*-glucuronidation)
 - Shape specific active sites
 - Noise in biological experiments

Trifluoperazine

From Ab Initio to Semi-empirical

B3LYP/SVP and AM1 Correlation

- Things to consider
 - AM1 is unable to detect weak interactions (H⁺ transfer)
 - AM1 systematic errors
- Fragment calculations
 - Aliphatic alcohols
 - Phenols
 - Carboxylic acids
 - Primary amines
 - Secondary amines
 - Tertiary amines

DFT vs Semi-Empirical

B3LYP/SVP and AM1 Correlation

- Things to consider
 - AM1 is unable to detect weak interactions (H⁺ transfer)
 - AM1 systematic errors
- Fragment calculations
 - Aliphatic alcohols
 - Phenols
 - Carboxylic acids
 - Primary amines
 - Secondary amines
 - Tertiary amines
- Corrections for each class
 - $R^2 = 0.95$

DFT vs Semi-Empirical (Corrected)

- Model order
 - Isoform-specific site of metabolism models
 - Isoform-specific substrate classification models
 - General substrate classification models
- Descriptors
 - E_a
 - Site-specific descriptors
 - Whole-molecule descriptors
- Methods
 - Gaussian Processes

An example: atom-pair descriptor describing contribution of aromaticity.

Site of Metabolism Model of UGT1A1

- Compounds
 - Only compounds which are glucuronidated
 - Compounds with two or more sites
- Training and test sets
 - Split by molecule
 - 80:20 split
 - 0.7 Tanimoto Coefficient
- Training set
 - 79 molecules, 242 sites
 - 120 glucuronidated and 122 not
- Test set
 - 19 molecules, 52 sites
 - 26 glucuronidated and 26 not

Substrate Classification Model of UGT1A1

- Compounds
 - All compounds measured for UGT1A1
 - Compounds with no site-specific information
- Training and test sets
 - Split by molecule
 - 80:20 split
 - 0.7 Tanimoto Coefficient
- Training Set
 - 337 molecules
 - 171 glucuronidated and 166 not
- Test set
 - 67 molecules
 - 36 glucuronidated and 31 not

Conclusions

- Mechanism of glucuronidation
 - Simplified transition state (ab initio)
 - Validated against experimental data
 - Works with both *N* and *O*-glucuronidation
 - Scalable using semi-empirical calculations
- QSAR models
 - Site of Metabolism Model
 - Substrate Classification Model
 - E_a and steric and orientation descriptors, whole molecule descriptors
- Future work
 - Tackle isoforms 1A4, 1A9 and 2B7

Matthew Segall

Peter Hunt

David Ponting

© 2019 Optibrium Ltd